

Chapter Analysis

FOCUS

- straightforward chapter
- linked to transport in humans chapter

EXAM

- commonly tested in MCQ and structured questions
- tested once in section B in the past 5 years

WEIGHTAGE

 Constitute to around 9.5% in Paper 2 in the past 5 years

Key Concept

human respiratory system alveoli

Respiratory System

Nasal passages	Passages leading from the nostrils lined with a moist mucous membrane
Pharynx	Common passage for the opening to oesophagus and trachea
Larynx	Voice box containing vocal cords
Trachea	 Breathing tube supported by C-shaped cartilage which prevents the trachea from collapsing as the air pressure in the lungs changes. branches into two bronchi, one to each lung.
Bronchi	 Branches repeatedly within the lungs to produce numerous finer tubes called bronchioles. The bronchioles at the end of the branching terminate in clusters of air sacs called alveoli.
Cilia (not pictured)	Hair-like structures that cover the epithelial lining of the trachea and bronchi. The mucus traps dust, pollen and other particles and the cilia sweeps it upwards into the pharynx

Alveoli

- Sites of gaseous exchange in the lungs.
- Blood entering the lungs from the heart has a **lower** concentration of oxygen and a higher concentration of carbon dioxide than the atmospheric air entering the alveoli in the lungs.
- Oxygen diffuses from the alveolar air into the blood capillaries
- Carbon dioxide diffuses from blood capillaries to the alveoli
- Oxygen and carbon dioxide **concentration gradients** are maintained by:
 - Continuous flow of blood through the blood capillaries.
 - Movement of air in and out of the alveoli, caused by breathing.

ADAPTATION OF LUNG FOR GASEOUS EXCHANGE

- 1. The numerous alveoli in the lungs provide a large surface area to volume ratio for gaseous exchange.
- 2. The wall of the alveolus is only one cell thick. This provides a short diffusion distance for gases, ensuring a faster rate of diffusion.
- 3. A thin film of moisture covers the surface of the alveolus. This allows oxygen to dissolve in it.
- 4. The walls of the alveoli are richly supplied with blood capillaries. The flow of blood maintains the steep concentration gradient of gases.

Key Concept

Smoking

pathway of air

Pathway that the air travels during inhalation

Nostrils → Nasal Passages → Pharynx → Larynx → Trachea → Bronchi → Bronchioles → Alveoli

Exhalation is the reverse

component of cigarette

Nicotine	 Addictive substance that stimulates adrenaline release Increases heart rate and blood pressure Increase the risk of blood clot Blood clots in arteries leads to increased risk of heart attack Blood clots in blood capillaries in the brain increases risk of stroke
Tar	 Carcinogenic substances that increases risk of cancer Paralyses cilia lining air passages. Dust and irritant are trapped in the mucus which cannot be removed, increasing risks of chronic bronchitis and emphysema.
Carbon Monoxide	 Combines irreversibly with haemoglobin to form carboxyhaemoglobin, which reduces efficiency of blood to transport oxygen Increases the rate of fatty deposits on the inner arterial wall, increasing risk of atherosclerosis
Irritants	 Paralyses cilia lining air passages, dust and irritant are trapped in the mucus which cannot be removed, increasing risks of chronic bronchitis and emphysema.

effect of smoking on health

CHRONIC BROCHITIS

- Chronic bronchitis is the inflammation of respiratory lining of the airways, caused by irritation
- Prolonged exposure to **tar and irritant particles** leads to **excessive mucus is secreted** by the epithelium.
- The cilia on the epithelium are paralysed thus mucus and dust particles cannot be removed.
- The air passages become blocked, making breathing difficult.
- **Persistent coughing** is needed to clear air passages, in order to breathe. This increases the risk of getting lung infections.

EMPHYSEMA

- Persistent and violent coughing due to bronchitis may lead to emphysema.
- alveolar walls break down due to persistent and violent coughing.
- This decreased surface area for gaseous exchange.
- Lungs lose their elasticity and reduce ability to expel air, causing severe breathlessness result.

LUNG CANCER

- Risk of lung cancer increases when a person smokes tobacco due to carcinogens (tar) present
- Cancer is the uncontrolled division of cells producing tumour.

Key Concept

Aerobic Respiration Anaerobic Respiration

aerobic respiration

Word equation

 $Glucose + Oxygen \longrightarrow CarbonDioxide + Water + Energy$

Chemical equation

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O + Energy$$

- in the presence of oxygen, aerobic respiration can produce a large amount of energy
- Site of aerobic respiration is mitochondria
- Energy is needed
 - Synthesising complex molecules from simpler molecules i.e. proteins from amino acids
 - * Synthesis of new protoplasm and genetic material for cell growth and division
 - Muscular contraction
 - Active transport
 - Transmission of nerve impulses
 - Maintenance of constant body temperature as heat is released during respiration

anaerobic respiration

in yeast

In yeast

Glucose \longrightarrow Ethanol + CarbonDioxide + Energy (small amount) $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2 + Energy$ (small amount)

- in contrast to aerobic respiration, anaerobic respiration occurs in the absence of oxygen and can only produce a small amount of energy
- does not require mitochondria

anaerobic respiration in muscles

in mammals

In muscle cells

Glucose \longrightarrow LacticAcid + Energy (small amount) $C_6H_{12}O_6 \longrightarrow 2C_3H_6O_3 + Energy$ (small amount)

- During vigorous muscular contractions, the muscle cells primarily respire aerobically.
- However, during strenuous exercise, there is a limit to the rate of breathing and heart rate, there may not be sufficient oxygen supplied to muscle cells to sustain aerobic respiration.
- Therefore, muscle cells also respire anaerobically for short durations in order to meet the energy demands of the activity.
- The extra energy released by anaerobic respiration supplements the energy released by aerobic respiration to allow continuous muscle contraction
- When anaerobic respiration occurs, there is a buildup of lactic acid in the muscle cells.
- The muscles are incur an oxygen debt and lactic acid build up causes fatigue and muscular pains.

Recovery period

- The body requires rest and the **breathing rate continues to be fast** for some time.
- This is to take in more oxygen to repay the oxygen debt.
- Lactic acid is removed from the muscles and transported to the liver.
- In the liver, oxygen is also used to oxidised some of the lactic acid to release energy. This energy is used to convert the remaining lactic acid back into glucose.
- When all the lactic acid has been converted to glucose, the oxygen debt is repaid.

For more notes & learning materials, visit:

www.overmugged.com

'O' levels crash course program

Join our telegram channel:

<u>@overmugged</u>

Need help?

Hee Xin Wei
(Private tutor with 5
years of experience)

90721842 (Whatsapp)

@xinweihee
(telegram username)

The 4 hour session focuses on going through key concepts and identifying commonly tested

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The 4 hour session focuses on going through key concepts and identifying commonly tested questions!

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Pre-register now on our <u>website</u> and secure your slots!

