DARRELL ER (COPYRIGHTED)

TOPIC 6.1: ACID & BASES

TIME

- Very important chapter that is needed for Salts & QA
- 4 **key** concepts: Acids, Bases, pH & indicators
- 2 advanced concepts: Strength/Concentration/Basicity & Base vs Alkaline

CHAPTER ANALYSIS


EXAM

Commonly tested every year
 Need to know relevant chemical and ionic
 equations (not going through in detail here, will focus on equations for "Chemical Equations"
 chapter instead)

- Medium overall weightage
- Constitute to **6%** of marks for past 5 year papers

ACIDIC PROPERTIES ACID'S CHEMICAL REACTIONS

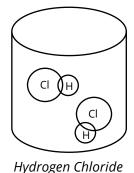
Physical properties of acids

1) Acids have a **sour taste.**Many fruits such as lemon and lime contain weak acids like citric acid.

2) Dilute acids are **irritants**. They can cause skin to have rashes and blisters.

3) Acids are able to **change the colour of indicators**, turns blue litmus paper to red.

Examples of acids:


Hydrochloric acid, HCl Sulfuric acid, H₂SO₄ Nitric acid, HNO₃ Phosphoric acid, H₃PO₄ Hydrofluoric acid, HF Hydrobromic acid, HBr

What makes an acid contain its 'acidic properties'?

All acids have their acidic properties due to the dissociation of **H**⁺ **ions** when the acids are dissolved in water.

For example,

 $HCl_{(1)}$ in liquid state is called hydrogen chloride. (not acid yet) $HCl_{(aq)}$ in aqueous state is called hydrochloric acid.

(c) (H⁺)

Hydrochloric Acid

This is because when HCl dissolves in water, it dissociates to produce **H**⁺ **ions** which gives it its acidic properties.

$$HCl_{(aq)} \rightarrow H^+_{(aq)} + Cl_{(aq)}$$

In other words, an acid only becomes an acid after it has been dissolved in water!

*Aqueous refers to a compound being in a solution. In other words, water is added.

3 CHEMICAL REACTIONS

- 1) ACID + METAL \rightarrow SALT + HYDROGEN GAS
- 2) ACID + BASE \rightarrow SALT + WATER
- 3) ACID + CARBONATE \rightarrow SALT + WATER + CARBON DIOXIDE GAS

1) ACID + METAL → SALT + HYDROGEN GAS

For example,

$$H_2SO_4 + Mg \rightarrow MgSO_4 + H_2$$

Test for hydrogen gas using lighted splint, it should extinguish with 'pop sound.

2) ACID + BASE → SALT + WATER

For example,

$$H_2SO_4 + MgO \rightarrow MgSO_4 + H_2O$$

This is also known as a **neutralisation** reaction. It releases heat to the surroundings.

3) ACID + CARBONATE → SALT + WATER + CARBON DIOXIDE

For example,

$$H_2SO_4 + MgCO_3 \rightarrow MgSO_4 + H_2O + CO_2$$

Test for carbon dioxide gas. Bubble the carbon dioxide gas into limewater, Ca(OH)₂, a white precipitate will be formed.

DIFFERENTIATING BASE vs ALKALINE ALKALINE PROPERTIES ALKALINE'S CHEMICAL REACTIONS

ALKALINE

BASE vs ALKALINE

A base is defined as a substance which reacts with an acid to form a salt and water only.

ACID + BASE
$$\rightarrow$$
 SALT + WATER
 $H_2SO_4 + MgO \rightarrow MgSO_4 + H_2O$

Bases are usually the **oxides and hydroxides of metals**.

Alkaline are a special group of bases that are soluble in water.

Hence, alkaline are able to dissociate in water to produce **OH**-ions, giving rise to its alkaline properties.

In other words, alkaline is a subset of base.

WHY?

All metal oxides and hydroxides are bases, but not all of them are soluble in water. Those that are soluble are known as alkaline.

Group I metals, such as potassium and sodium, always form alkaline as their oxides and hydroxides are highly soluble.

Group II metals, such as calcium, are slightly soluble, and can be an alkaline as well.

ALKALINE

Physical properties of alkaline

- 1) Alkaline have a bitter taste.
- 2) Dilute alkalis feel slippery and soapy to touch.
- 3) Concentrated alkalis are caustic, causing chemical burns.
- 4) Alkalis change red litmus paper blue.

Uses of alkaline

- 1) Found in toothpaste to neutralise acid on teeth
- 2) Calcium hydroxide used to neutalise acidity in soil
- 3) Magnesium hydroxide in indigestion tablets, also known as antacid pills
- 4) Sodium hydroxide in floor & oven cleaners

Examples of alkaline:


sodium hydroxide, NaOH potassium hydroxide, KOH calcium hydroxide, Ca(OH)₂ aqueous ammonia, NH₃

What makes an alkaline contain its 'alkaline properties'?

(Exactly the same as acid)

All alkaline have their alkaline properties due to the dissociation of **OH**-ions when the alkaline are dissolved in water.

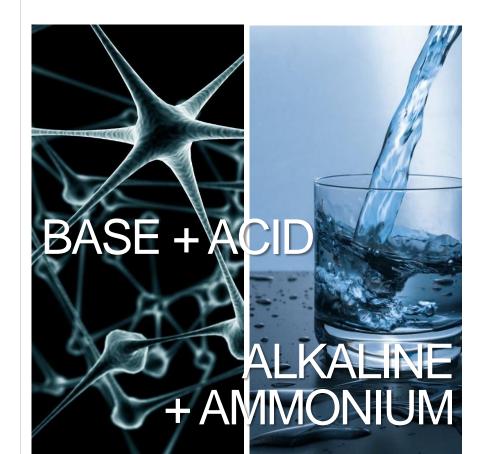
For example,

Sodium Hydroxide

Weak Alkaline

reversible

$$NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$


Aqueous ammonia is a commonly used weak alkaline that dissociates partially in water to produce a **low concentration of OH**- **ions**.

As you can see in the equation, \rightleftharpoons is used instead of \rightarrow .

 \Rightarrow means the reaction is **reversible**. So some of the NH₄⁺ turns back to NH₃, resulting in **a low concentration of OH**⁻ **ions** produced.

2 CHEMICAL REACTIONS

- BASE + ACID → SALT + WATER
- 2) ALKALINE + AMMONIUM SALT → SALT + WATER + AMMONIA GAS

1) BASE + ACID → SALT + WATER

For example,

$$Fe_2O_3(s) + 6HCI(aq) \rightarrow 2FeCI_3(aq) + 3H_2O(l)$$

This is also known as a **neutralisation** reaction.

In this example, hydrochloric acid is used to remove rust, Fe₂O₃.

2) ALKALINE + AMMONIUM SALT → SALT + WATER + AMMONIA GAS

*Ammonium = NH₄+

For example,

2KOH (aq) +
$$(NH_4)_2SO_4(s) \rightarrow K_2SO_4(aq) + 2NH_3(g) + 2H_2O(l)$$

To test for ammonia gas, place a strip of moist red litmus paper at the mouth of the test tube where the reaction is taking place.

The moist red litmus paper will turn blue.

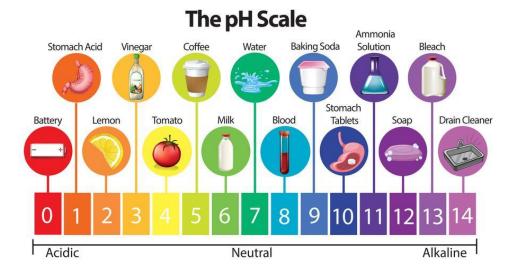
Ammonia is a gas that has a characteristic pungent odour.

TAKE NOTE

Moist litmus paper must be used so that the ammonia gas can dissolve in water and undergo dissociate to form **OH** ions.

Remember that an alkaline only gets its alkaline properties **after** it has dissociated in water!

pH SCALE INDICATORS


pH scale

The pH of a solution is a quantitative measure of the extent of acidity or alkalinity. The pH scale ranges from 0 to 14. pH actually stands for,

$$pH = - log [H+]$$

To simplify, means that if pH values change by a factor of 1, the concentration is changed by a factor of 10.

pH 1 is 10 times more acidic than pH 2.

Importance of pH

Food preservatives

Food goes bad when it is attacked by microorganisms like bacteria. Acids are used as preservatives as microorganisms cannot grow well in acidic solutions.

For example, ethanoic acid (vinegar): to preserve vegetables like cabbage & kimchi benzoic acid: to preserve jams, fruit juices and oyster sauces

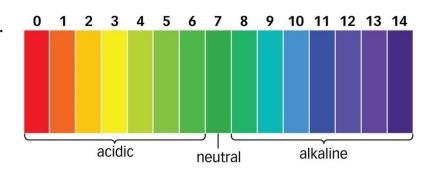
pH in soil

Many plants grow best in weak acidic soil of pH 5.6. If the soil is too acidic, limestone $CaCO_3$, in the form of agricultural lime can be added to raise the pH. Quick lime (CaO) or slaked lime, $Ca(OH)_2$, can be added too.

pH in human body

Different sections of the human body have different pH values.

Gastric juices in the stomach are acidic due to hydrochloric acid, with a pH of 1.5. Fluids in the small intestine are alkaline with a pH of 8.4. Blood is slightly alkaline with a pH in the range of 7.35 to 7.45.


(Easy to understand if you take Biology, 'Digestive System'.)

*Slowly familiarise but eventually must know them!

Indicators

Indicator	Acidic	Equivalence Point	Alkaline
Litmus	Red	Purple	Blue
Methyl orange	Red	Orange	Yellow
Screened methyl orange	Purple	Grey	Green
Phenolphthalein	Colourless	Pale pink	Pink
Bromothymol blue	Yellow	Green	Blue

Also, universal indicator.

For more notes & learning materials, visit:

www.overmugged.com

Join our telegram channel:

<u>@overmugged</u>

Need help?

Darrell Er (Private tutor with 8 years of experience)

8777 0921 (Whatsapp)

<u>@DarrellEr</u>

(telegram username)

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!

