The Periodic Table of the Chemical Elements

DARRELL ER (COPYRIGHTED) ©

South of the described from the second of th

have in the frametic specification to two

or made the source

103 104 105 106 107 108 109 110 111 1 RF 213 5広 137 75 九世 215 R4

TIME

- Content heavy chapter
- 3 **key** concepts

CHAPTER ANALYSIS

EXAM

- Usually tested along with 'Atomic Structure' & 'Chemical Bonding'
- Highly tested on specifically 'alkali metals', 'halogens' & 'noble gases'.

- Medium overall weightage
- Constitute to **4%** of marks for past 5 year papers

KEY CONCEPT

PERIODIC TABLE ALKALI METALS HALOGENS NOBLE GASES

riodi PERIODICATABLE

Horizontal rows are known as **periods**. (Represent **number of electron shells**.)

Vertical rows are known as groups. (Represent number of valence electrons.)

The block of elements between Group II and Group III are called **transition metals** and they tend to have variable oxidation states.

One way of organizing the periodic table....

- The zigzag line or the staircase separates
- · Metals vs Nonmetals

Trend across a period (left to right)

- Number of protons increases
- Atomic radius decreases
- Metallic properties decreases

Trends down a group (top to bottom)

- Number of protons increases
- Number of electron shells increases
- Atomic radius increases
- Metallic properties remain constant

ION FORMATION

Metallic elements will form cations as they lose their valence electrons to form positively charged ions.

For example, Group I elements like Sodium (Na) will form Na⁺ with charge +1.

Non-metallic elements will **form anions** as they gain electrons to form negatively charged ions.

For example, Group VII elements like chlorine (CI) will form CI with charge of –1.

ALKALI METALS

Name of element	Melting points / °C	Density / gcm- ³
Lithium (Li)	180	0.534
Sodium (Na)	98	0.971
Potassium (K)	63	0.862
Rubidium (Rb)	39	1.532
Caesium (Cs)	28	1.873
Francium (Fr)	27	-
	(decreases down the	(increases down the
	group)	group)

GROUP I: ALKALI METALS

Group I elements are called alkali metals as they react with water to give alkaline solutions.

Metal	Chloride	Nitrate	Carbon	Sulfate	Oxide	Hydroxid
			ate			е
Lithium	LiCl	LiNO ₃	Li ₂ CO ₃	Li₂SO₄	Li ₂ O	LiOH
Littiiuiii	LICI	LIIVO ₃	Li ₂ CO ₃	LI ₂ 30 ₄	LI ₂ O	LIOTT
Sodium	NaCl	NaNO₃	Na_2CO_3	Na ₂ SO ₄	Na₂O	NaOH
Potassium	KCl	KNO ₃	K ₂ CO ₃	K₂SO₄	K ₂ O	КОН
rotassiuiii	IXCI	1003	N ₂ CO ₃	12304	120	KOH

PHYSICAL PROPERTIES OF ALKALI METALS

- Low melting points
- Low densities, lithium, sodium and potassium can float on water
- Good conductor of electricity & heat

Densities of alkali metals generally increase down the group while melting points decrease down the group.

This is due to the increase in atomic radius down the group.

Chemical properties of alkali metals

As they have only one valence electron in their outermost shell, they form ionic compounds, with their resulting ions of +1 charge.

Reactivity of alkali metals increases down the group due to the extra electron shells and the nucleus is further away, which increases the **ease of losing the valence electron**.

HALOGENS

(Name of element	State	Colour
	Fluorine (F ₂)	Gas	Pale Yellow
1	Chlorine (Cl ₂)	Gas	Green Yellow
6	Bromine (Br ₂)	Liquid	Reddish brown
	lodine (I ₂)	Solid	Black
1	Astatine (At ₂)	Solid	Black
Second Second		(increases down the group)	(increasing colour intensity)

GROUP VII: THE HALOGENS

Halogens usually exist as diatomic molecules.

PHYSICAL PROPERTIES OF HALOGENS

- Low melting and boiling points that has an increasing trend down the group
- Densities of the halogens increase down the group
- Dissolve sparingly in water (chlorine, bromine and iodine) generally, but soluble in organic solvents.
- Does not conduct electricity due to a lack of mobile charge carriers

CHEMICAL PROPERTIES OF HALOGENS

Reactivity decreases down the group. The ease of gaining a valence electron decreases as the valence shell is further away from the nucleus, making it more difficult to attract an electron.

DISPLACEMENT REACTION

A more reactive halogen is able to displace a less reactive halogen from an aqueous solution of its ions.

$$Cl_2$$
 (aq) + 2KBr (aq) \rightarrow 2KCl (aq) + Br₂ (aq)

The solution will turn reddish brown due to the aqueous bromine produced.

NOBLE GAS

	Name of element	Melting points / °C	Boiling points / °C	State
	Helium (He)	-	-269	Gas
	Neon (Ne)	-248	-246	Gas
74	Argon (Ar)	-189	-186	Gas
-	Krypton (Kr)	-157	-153	Gas
1	Xenon (Xe)	-111	-108	Gas
	Radon (Rn)	-71	-62	Gas
ý		(increases down the	(increases down the	
		group)	group)	

GROUP 0: THE NOBLE GASES

All noble gases have a **fully filled valence shell**.

Noble gases are **unreactive** and **inert** since they have a **stable electronic configuration**.

They exist as mono-atomic particles (single atoms).

PHYSICAL PROPERTIES OF NOBLE GASES

- Do not conduct electricity (lack of charge carriers)
- Very low melting and boiling points
- Increasing melting and boiling points going down the group
- Increasing densities of noble gases going down the group

USE OF NOBLE GASES

Element	Application	Reason	
Helium (He)	Fill airships & hot air balloons	Low density comparative to air	
Neon (Ne)	Fill interior of neon light tubes	Unreactive gas	
Argon (Ar)	Fill light bulbs	Unreactive gas	

For more notes & learning materials, visit:

www.overmugged.com

Join our telegram channel:

<u>@overmugged</u>

Need help?

DARRELL (Private tutor with **7 years** of experience)

8777 0921 (Whatsapp)

@Darreller
(telegram username)

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in **June 2021 and last till Oct 2021**.

Register now on our <u>website</u> and secure your slots!

