A LEVEL H2 MATHEMATICS VECTORS

MASTERY

- 3D Vectors, Vector Algebra
- Scalar (Dot) and Vector (Cross) Product
- Vector Equations for Lines
- Vector Equations for Planes

CHAPTER ANALYSIS

EXAM

- Important to understand concepts instead of blindly memorizing
- Good to draw out diagrams to aid understanding
- Unfortunately, practice makes perfect. Make sure to practice the hard questions.

WEIGHTAGE

- Huge topic, tested every year without fail
- Minimally 2 questions a year on Vectors
- Typically constitutes about 10% of final grade, much higher weightage as compared to other chapters

VECTORS I

BASIC VECTOR PROPERTIES VECTOR ALGEBRA PARALLEL AND NON-PARALLEL VECTORS SCALAR PRODUCT (DOT PRODUCT) VECTOR PRODUCT (CROSS PRODUCT)

Basic Vector Properties

$$|\overrightarrow{OA}| = |a|$$
$$= \sqrt{4^2 + 7^2 + 11^2}$$

$$\overrightarrow{OA} = a = \begin{pmatrix} 4 \\ 7 \\ 11 \end{pmatrix} = 4i + 7j + 11k$$

The **zero/null vector** is a vector with zero magnitude and no direction.

$$\mathbf{0} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

0 is the **origin**, from which we usually associate our position vectors.

k = 0

A (4, 7, 11)

$$i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

A unit vector, denoted by \widehat{a} , is a vector whose magnitude is 1.

$$\widehat{a} = \frac{a}{|a|}$$

a

i, *j* and *k* are unit vectors.

- A scalar quantity has magnitude but no associated direction (e.g. distance and speed).
- A <u>vector</u> quantity has both magnitude and direction (e.g. displacement and velocity).
- A *position vector* defines the position of a point relative to another.
- A free/displacement vector is a vector with no associated position.

Modulus of Vector = Magnitude or Length of Vector

If
$$a = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 then

$$|a| = \sqrt{x^2 + y^2 + z^2}$$

Vector Algebra

$$a + b = \overrightarrow{OA} + \overrightarrow{OB}$$

$$= \overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OB} + \overrightarrow{BC}$$

0

b

В

In general,
$$\overrightarrow{UV} = \overrightarrow{OV} - \overrightarrow{OU}$$

 \boldsymbol{a}

C

a + b

 $-\boldsymbol{b}$

Α

The **negative of a vector** has the same magnitude as a vector but is opposite in direction (i.e. \boldsymbol{a} and $-\boldsymbol{a}$).

$$a \pm b = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \pm \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 \pm x_2 \\ y_1 \pm y_2 \\ z_1 \pm z_2 \end{pmatrix}$$

$$a - b = a + (-b) = \overrightarrow{BO} + \overrightarrow{OA}$$

= $\overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{BA}$

a

a - b

If
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \\ z_1 - z_2 \end{pmatrix}$$

$$|\overrightarrow{AB}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Equal Vectors

Vectors are equal when they have the same direction and

magnitude. If
$$\overrightarrow{AB} = \begin{pmatrix} d \\ e \\ f \end{pmatrix}$$
 and $\overrightarrow{CD} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}$, $\overrightarrow{AB} = \overrightarrow{CD}$, then

$$\begin{pmatrix} d \\ e \\ f \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \end{pmatrix} \text{ and } d = p, e = q, \text{ and } f = r$$

Scalar Multiplication

When vector \boldsymbol{a} is multiplied by the scalar λ , the magnitude of the vector changes and the vector λa has magnitude λ times of a (i.e. $|\lambda a| = \lambda |a|$)

- If $\lambda > 0$, λa and a are in the same direction
 - If $\lambda = 0$, λa is a zero vector i.e. $\lambda a = 0$
- If $\lambda < 0$, λa and a are in opposite directions

Laws of Vector Algebra

$$1. \quad a+b=b+a$$

2.
$$\lambda a = a\lambda$$

3.
$$(a+b)+c=a+(b+c)$$

4.
$$(\lambda \mu) \mathbf{a} = \lambda(\mu \mathbf{a})$$

$$5. \quad (\lambda + \mu)\mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$$

6.
$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$$

Parallel & Non-Parallel Vectors

0

• *K*

We say \boldsymbol{a} is parallel to \boldsymbol{b} if and only if $\boldsymbol{b} = \lambda \boldsymbol{a}$ for some $\lambda \in \mathbb{R} \setminus \{0\}$

A **unit vector,** denoted by \hat{a} , is a vector whose **magnitude is 1**.

$$\widehat{a} = \frac{a}{|a|}$$

Collinearity

Three points, P, Q and R are collinear if and only if \overrightarrow{PQ} // \overrightarrow{PR} , with P as the common point i.e. $\overrightarrow{PQ} = \lambda \overrightarrow{PR}$ for some $\lambda \in \mathbb{R} \setminus \{0\}$

The Ratio Theorem

If R is the **midpoint** of AB, then R divides AB in the ratio **1:1** and

$$\overrightarrow{OR} = r = \frac{1}{2}(a+b)$$

To find $\overrightarrow{OR} = r$:

$$r = \frac{\mu a + \lambda b}{\lambda + \mu}$$

Scalar Product (Dot Product)

The scalar product of two vectors **a** and **b**, is defined as

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$

θ is the angle between a and b such that a and b are either both leaving from or both meeting at the same point

$$a \cdot b = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$
$$= x_1 x_2 + y_1 y_2 + z_1 z_2$$

 $m{a} \cdot m{b}$ is called a scalar product because the product is a scalar

 \boldsymbol{a}

Perpendicular Vectors

Two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are **perpendicular** i.e. $\boldsymbol{a} \perp \boldsymbol{b}$, if and only if $\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{0}$

Scalar Product Properties

1.
$$a \cdot b = b \cdot a$$

2. $a \cdot (b \pm c) = (a \cdot b) \pm (a \cdot c)$

3.
$$\lambda (a \cdot b) = (\lambda a) \cdot b = a \cdot (\lambda b)$$

4. $a \cdot a = |a|^2$

Length of Projection

$$|\overrightarrow{OP}| = |a \cdot \hat{b}| = \frac{|a \cdot b|}{|b|}$$

$$\cos\theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$$

Link this to **direction cosines**, which is the cosine of the angle between a vector and the x-, y- and z-axes

Vector Product (Cross Product)

The vector product of two vectors **a** and **b**, is defined as

$$\mathbf{a} \times \mathbf{b} = (|\mathbf{a}||\mathbf{b}|\sin\theta)\hat{\mathbf{n}}$$

 θ is the angle between \boldsymbol{a} and \boldsymbol{b} , and $\widehat{\boldsymbol{n}}$ is the unit vector perpendicular to both \boldsymbol{a} and \boldsymbol{b} (unit vector of normal)

 $a \times b$ is called a vector product because the product is a vector

$$a \times b = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \times \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$$
$$= \begin{pmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{pmatrix}$$

Parallel Vectors

Two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are parallel if and only if $\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{0}$

Area of Triangle OAB = $\frac{1}{2}|a \times b|$ Area of Parallelogram OACB = $|a \times b|$

Vector Product Properties

1.
$$a \times b = -(b \times a)$$

2.
$$\mathbf{a} \times (\mathbf{b} \pm \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \pm (\mathbf{a} \times \mathbf{c})$$

3.
$$\lambda (a \times b) = (\lambda a) \times b = a \times (\lambda b)$$

4.
$$a \times a = 0$$

5.
$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{b} \times \mathbf{a}| = |\mathbf{a}||\mathbf{b}||\sin\theta|$$

VECTORS II

EQUATIONS OF STRAIGHT LINES CALCULATIONS FOR A POINT AND A LINE CALCULATIONS FOR A PAIR OF LINES

Equations of Straight Lines

Vector Equation

$$l: oldsymbol{r} = oldsymbol{a} + \lambda oldsymbol{b}$$
 , $\lambda \in \mathbb{R}$ Any point Direction on the line vector of line

Parametric Equation

$$\begin{cases} x = a_1 + \lambda b_1 \\ y = a_2 + \lambda b_2 \\ z = a_3 + \lambda b_3 \end{cases}, \quad \lambda \in \mathbb{R}$$

From vector equation, let $\mathbf{r} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix}$ to transform into parametric equation

Cartesian Equation

Equate λ

$$\frac{x-a_1}{b_1}=\frac{y-a_2}{b_2}=\frac{z-a_3}{b_3}, \qquad \lambda \in \mathbb{R}$$

If $b_1 = 0$, cartesian equations becomes

Make λ the subject

$$x=a_1$$
, $\frac{y-a_2}{b_2}=\frac{z-a_3}{b_3}$

Calculations For A Point And A Line

Determine If A Point Lies On A Line

To determine if a point lies on a line, substitute the point into the vector equation of the line and solve for a unique value of λ

If a unique solution is found, the point lies on the line. If not, it does not lie on the line.

Point A (2, -3, 9) lies on the line
$$l_1: r = \begin{pmatrix} \mathbf{1} \\ -\mathbf{6} \\ \mathbf{3} \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{1} \\ \mathbf{3} \\ \mathbf{6} \end{pmatrix}$$

because $\begin{pmatrix} 2 \\ -3 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 \\ -6 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$ satisfies the equation l_1 with $\lambda = 1$ (unique solution).

Perpendicular Distance From A Point To A Line

- 1. Find foot of the perpendicular from point to line (see right side)
- 2. Find modulus of \overrightarrow{OF}

Foot Of Perpendicular From A Point To A Line

To find foot of perpendicular \overrightarrow{OF} from Point A to line l:

- 1. Let F be foot of perpendicular from point to line
- 2. Since F lies on l, let \overrightarrow{OF} = vector equation of line
- 3. Since $\overrightarrow{AF} \perp l$, let $\overrightarrow{AF} \cdot b = 0$ to find value of λ
- 4. Sub back value of λ into l to find \overrightarrow{OF}

To find foot of perpendicular \overrightarrow{OF} from Point A (2, -3, 9) to line $l_1: r = \begin{pmatrix} 1 \\ -6 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$:

1. Let F be foot of perpendicular from point to line

2. Since F lies on
$$l$$
, let $\overrightarrow{OF} = \begin{pmatrix} 1 \\ -6 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$

3. Since
$$\overrightarrow{AF} \perp l$$
, let $\overrightarrow{AF} \cdot \boldsymbol{b} = \begin{bmatrix} \begin{pmatrix} \mathbf{1} + \lambda \\ -\mathbf{6} + 3\lambda \\ \mathbf{3} + 6\lambda \end{pmatrix} - \begin{pmatrix} \mathbf{2} \\ -\mathbf{3} \\ \mathbf{9} \end{bmatrix} \cdot \begin{pmatrix} \mathbf{1} \\ \mathbf{3} \\ \mathbf{6} \end{pmatrix} = \mathbf{0} \Rightarrow \lambda = -\frac{23}{13}$

4. Sub
$$\lambda$$
 into l to find $\overrightarrow{OF} \Rightarrow \overrightarrow{OF} = \begin{pmatrix} 1 \\ -6 \\ 3 \end{pmatrix} - \frac{23}{13} \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} = -\frac{1}{13} \begin{pmatrix} 10 \\ 147 \\ 99 \end{pmatrix}$

Calculations For A Pair Of Lines

Relationship Between Two Lines

	Parallel	Not Parallel
Intersecting	Same Line	Intersecting
Not Intersecting	Parallel Lines	Skew Lines

Check if lines are parallel to one another using direction vectors

If vectors are **not parallel**, check if they **intersect** by treating their vector equations as **simultaneous equations**

If **no solution** is found, lines are **not parallel**, **do not intersect** and are **skew**

Parallel

$$\begin{vmatrix} l_1: r = \begin{pmatrix} 1 \\ -6 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \quad l_2: r = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 6 \\ 12 \end{pmatrix}$$
$$\begin{pmatrix} 2 \\ 6 \\ 12 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} \Rightarrow l_1 // l_2$$

Intersecting $\begin{pmatrix} \mathbf{4} \\ \mathbf{8} \\ \mathbf{3} \end{pmatrix} + \lambda \begin{pmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{7} \\ \mathbf{6} \\ \mathbf{5} \end{pmatrix} + \mu \begin{pmatrix} \mathbf{6} \\ \mathbf{4} \\ \mathbf{5} \end{pmatrix}$ $\begin{cases} 4 + \lambda = 7 + 6\mu \\ 8 + 2\lambda = 6 + 4\mu \\ 3 + \lambda = 5 + 5\mu \end{cases}$

Using G.C. to solve $\Rightarrow \lambda = -3$ and $\mu = -1$

Angle Between Two Non-Zero Vectors

$$\cos\theta = \frac{\boldsymbol{b_1} \cdot \boldsymbol{b_2}}{|\boldsymbol{b_1}||\boldsymbol{b_2}|}$$

Angle Between Two Non-Zero Vectors

 θ may be acute or obtuse, depending on the sign of the direction vectors If θ is acute, then the acute angle is θ If θ is obtuse, then the acute angle is 180° - θ

VECTORS II

EQUATIONS OF PLANES CALCULATIONS FOR A LINE AND A PLANE CALCULATIONS FOR A POINT AND A PLANE CALCULATIONS FOR TWO PLANES CALCULATIONS FOR THREE PLANES

Equations of Planes

Vector Equation

You may use the vector equation of a plane to find any point on the plane i.e. $\mathbf{r} = \overrightarrow{\mathbf{OR}}$

Scalar Product Form

To find normal vector $m{n}$: Cross product any two direction vectors on the plane i.e. $m{b} \times m{c}$

Cartesian Equation

Where $d = a_1 n_1 + a_2 n_2 + a_3 n_3$

Calculations For A Line And A Plane

Angle Between A Line And A Plane

Let θ is the acute angle between the line l and the plane π . To find θ we can first find ϕ , the acute angle between l and the normal \boldsymbol{n} to the plane π , which is also the angle between \boldsymbol{b} and \boldsymbol{n} . Then $\theta=90^{\circ}-\phi$

- 1. Use $\cos \phi = \frac{b \cdot n}{|b||n|}$ to find ϕ
- 2. Then $\theta = 90^{\circ} \phi$
- 3. If $\theta > 90^{\circ} \Rightarrow \theta 90^{\circ}$ to find acute angle between l and π

Point Of Intersection Between A Line And A Plane

There are 3 possible scenarios for the relationship between l and π :

- 1. l and π do not intersect
- 2. l lies within π
- 3. l and π intersect at a point

To determine the relationship between l and π :

Calculations For A Point And A Plane

Determine If A Point Lies On A Plane

To determine if a point lies on a line, substitute the point into the scalar product equation of the plane and observe if $r \cdot n = d$

Perpendicular Distance From A Point To A Plane

- Find foot of the perpendicular from point to plane (see right side)
- 2. Find modulus of \overrightarrow{OF}

Foot Of Perpendicular From A Point To A Plane

To find foot of perpendicular $\overline{\mathbf{OF}}$ from Point A to plane π :

- 1. Let F be foot of perpendicular from point to plane
- 2. Let l_{AF} be a line with $r = \overrightarrow{OA} + \lambda n$ where n is the normal vector of the plane
- 3. Since l_{AF} intersects the plane, let $l_{AF} \cdot {m n} = {m d}$ to find value of λ
- 4. Sub value of λ into l_{AF} to find $\overrightarrow{m{OF}}$

To find foot of perpendicular \overrightarrow{OF} from Point A (2, -3, 9) to plane $\pi: r \cdot \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = 1$:

1. Let F be foot of perpendicular from point to plane

2. Let
$$l_{AF}: r = \begin{pmatrix} 2 \\ -3 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$$

3. Since l_{AF} intersects the plane, let $l_{AF} \cdot \boldsymbol{n} = 1$

$$\begin{bmatrix} 2 + \lambda \\ -3 + \lambda \\ 9 - 3\lambda \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = 1 \Rightarrow \lambda = \frac{29}{11}$$

4. Sub
$$\lambda$$
 into l_{AF} to find $\overrightarrow{OF} \Rightarrow \overrightarrow{OF} = \begin{pmatrix} 2 \\ -3 \\ 9 \end{pmatrix} + \frac{29}{11} \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 51 \\ -4 \\ 12 \end{pmatrix}$

Calculations For Two Planes

Intersection Of Two Planes

Case 1: Do Not Intersect, Parallel Planes

 $n_1 = \lambda n_3$ for some $\lambda \in \mathbb{R}$

Case 2: Two Planes Intersect In A Line

Use G.C. to solve equations for 2 planes using simultaneous equations to get 2 equations containing z. Let z = t and manipulate equations to get equation of a line.

Case 2 Example

$$\pi_1$$
: $x + 3y + 2z = 4$
 π_2 : $x - y - z = 4$

Using G.C. and letting z = t:

$$x = 4 + \frac{1}{4}t$$

$$y = -\frac{3}{4}t$$

$$z = t$$

$$\Rightarrow r = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} \frac{1}{4} \\ -\frac{3}{4} \\ 1 \end{pmatrix}, t \in \mathbb{R}$$

Angle Between Two Planes

$$\cos\theta = \frac{n_1 \cdot n_2}{|n_1||n_2|}$$

Angle Between Two Planes

 θ may be acute or obtuse, depending on the sign of the direction vectors If θ is acute, then the acute angle is θ If θ is obtuse, then the acute angle is 180° - θ

Calculations For Three Planes

Relationship Between Three Planes

Case 1: Intersect At A Single Point

Use G.C. to solve equations for 3 planes using simultaneous equations to get unique values for x, y and z

Case 2: Intersect Along One Common Line

Use G.C. to solve equations for 3 planes using simultaneous equations to get 3 equations containing z. Manipulate equations to get equation of a line.

$$\pi_1 : 2x + 3y - 3z = 14$$
 Case 2 Example
$$\pi_2 : -3x + y + 10z = -32$$

$$\pi_3 : x + 7y + 4z = -4$$

Case 3: Do Not Intersect At Any Common Point Or Line

Check if planes are parallel to one another using normal vectors (Case 3a or 3b)

If planes are **not parallel**, check if they **intersect** by treating equations as simultaneous equations (Case 1 or 2)

- (a) All 3 Parallel
- (b) 2 Of The 3 Parallel
- (c) Triangular Prism

Use G.C. to solve equations for 3 planes using simultaneous equations, obtains no solution found.

If no solution is found, lines are not parallel, do **not intersect** and planes form a triangular prism (Case 3c)

For more notes & learning materials, visit:

www.overmugged.com

Join our telegram channel: **@overmuggedAlevels**

Need help?

Shalyn Tay
(Private tutor with 4 years of experience)

82014166 (Whatsapp)

@shalyntay (telegram username)

'A' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'A' Levels!

Each H2 subject will have 3 crash course modules which will cover their entire H2 syllabus.

The 4 hour module focuses on going through key concepts and identifying commonly tested questions!

The crash courses modules will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!

